DARPA’s HAPTIX Program Starts Work to Provide Prosthetic Hands with Sense of Touch

The Defense Advanced Research Projects Agency (DARPA) announced that it has awarded prime contracts for Phase 1 of its Hand Proprioception and Touch Interfaces (HAPTIX) program to create a prosthetic hand system that moves and provides sensation like a natural hand. DARPA is working with teams led by Case Western Reserve University (CWRU); Cleveland Clinic; Draper Laboratory, Cambridge, Massachusetts; Nerves, Dallas; Ripple, Salt Lake City, University of Pittsburgh (Pitt); University of Utah (U of U); and University of Florida.

HAPTIX seeks to create a prosthetic hand system that moves and provides sensation like a natural hand such that it creates a sensory experience so rich and vibrant that users would want to wear their prostheses full time. By restoring sensory functions, HAPTIX also aims to reduce or eliminate phantom limb pain, which affects about 80 percent of amputees. The program plans to adapt one of the prosthetic limb systems developed recently under DARPA’s Revolutionizing Prosthetics (RP) program to incorporate interfaces that provide intuitive control and sensory feedback to users. These interfaces would build on advanced neural-interface technologies being developed through DARPA’s Reliable Neural-Interface Technology (RE-NET) program.

“The ultimate goal for HAPTIX is to create a device that is safe, effective, and reliable enough for use in everyday activities,” said Doug Weber, PhD, DARPA program manager.

DARPA is evaluating several distinct technical approaches in Phase 1. Those that prove successful will continue into Phase 2, which will integrate selected technology components into a complete HAPTIX test system. The agency plans to initiate take-home trials of a complete, U.S. Food and Drug Administration-approved HAPTIX prosthesis system within four years.

Where appropriate, HAPTIX teams intend to leverage commercially available technologies such as intramuscular electrodes and lead technologies developed initially for cardiac pacemakers that are now used in several modern implantable medical devices. The program also plans to test advanced microelectrode array and nerve cuff electrode technologies that have been developed over the past two decades with support from the National Institutes of Health, the U.S. Department of Veterans Affairs, and DARPA. To help the Phase 1 contractors conduct their research more quickly and cost effectively, DARPA is providing prosthetics simulation software for testing designs.

HAPTIX Phase 1 contract awardees have also received grants to advance their work:

Exit mobile version